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The isentropic supersonic flow in a duct under conditions of interaction of cent-
ered compression and rarefaction waves is considered, Such flow may occur,
for instance, in the inlet part of certain optimal asymmetric nozzles [1] and,
also, in the case of a deflected supemonic stream, This essentially depends

on the behavior of solution of the Darboux equation near the degeneration line
for boundary conditions specified at some distance from the latter, It is shown
that the considered flow obtains only when the Mach number of the stream in
the duct inlet exceeds some value higher than unity, Some numerical results

are preseated,

1. Let us consider an isentropic plane supersonic flow in a duct defines as follows.
A borizontal uniform supersonic stream flows through cross section qo (Fig. 1, a) at
Mach number My, My > M;* > 1, where M,* is some number which is to be
determined, A simple centered rarefaction wave in which & — i (M) = —h (My),
where 0§ is the angle of inclination of the velocity vector and function A (M) for a
polytopic gas with adiabatic exponent % is of the form

h(M) = harctg A1 Y M —1) —arctg Y M* —1, A= V:t:

Segment op of the lower wall is horizontal and the shape of the wall along pb
is such that a simple compression wave cdb is focused at point d at which 8 + &
(M) = 8, + h (M,), where 0, = h (M) — h (My). Intheregion acd the
flow parameters are constant: M = M, and 6 = 6,. The Mach number along
the characteristic db is equal My and O at db is equal 28,.

The second duct (Fig, 1, b) differs from the first in that it is curved right from the
beginning of the intake section @0. The Mach mumber M, at db is, consequently,
determined by the following relations (1] :

2f (M) = F (M), [ (M) = (1 + %52 a2)° or2 —1)
1

8= — ST

Of interest are the flows in regions pcb (Fig.1,a) and gpcb (Fig. 1,b) of these
two ducts. It can be shown that at fairly high M, the supersonic flows in these
regions of both ducts can be readily determined, On the other hand, it is clear on
similarity considerations that at M, = 1 supemonic flows are unobtainable in these
ducts. We can, therefore, presume the existence of numbers M1* = M, (M., x),
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obviously different for each duct, such that it is possible to design supersonic ducts of
the type shown in Fig.1 for My > My* , Elucidation of this problem will make it
possible to indicate the range of admissible numbers M7 for asymmetric nozzles con-
sidered in [1].
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The flows in regions pcb and gpcb are determined by solving the Goursat prob-
lem using the known data along the characteristics pc and c¢b. We pass to the pla-
ne of Riemann invariants, Let N =0 -+ % (M) and £ =6 — h (M) and p be
the stream function selected so that ¥, = 4 and ¥, = 0. The plane isentropic
supersonic flow is defined by the Darboux equation [2, 3]

a2 W oy
For — =8 (5 — ) =0 E

Function g (M — §) may be represented in parametric form. For a polytropic
gas we have

n—§ M), gn—¥) YT iy FgMm—§) (L2

e =B <Cm—81, €>0, 70

In the plane &, 1 segments pc and cb correspond to characteristics pc and
cb (Fig,2). In the case of the first duct we have

§p = —h (My), Ny = 3 (Ml): E. = gp: Ne = 2h (M) ‘"Iz{ﬂfl)
£ = 2k (M) — 3h (M), = 7

In the case of the second duct point b shifts somewhat to the right without reach~
ing the straight line n — E = 0. Values of Y on pc and cb (Fig.2) in terms of
n and § | respectively, are known and may be represented in parametric form,

The determination of flow in region pcb or gpcb is thus reduced to the Goursat
problem for the Darboux equation (1. 1) in region mpebn (Fig.2). In Fig, 2 segments
pm and br comespond to characteristics pm and hn of the second and first sets in
Fig.1,a. Segment mn of the straight line n = { in Fig. 2 corresponds to curve mn
in Fig, 1, and the Mach number along mn is equal unity,

Three cases are possible,
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1°. Alongsegment MR Y >Pp =1, hence along the line P = P, =
1 wehave n—E >0, i,e, M > 1. In this case a supersonic flow obtains
in region pcd (opebq) including the lower wall ob (Fig, 1),

2°, Along segment mn Y > 1 with the equality satisfied at least at one
point, In this case a supersonic flow is still realized in region pch (opcbg) (Fig. 1),
but the lower wall contains at least one point at which A = {1, i.e. the velocity
is sonic,

3°, Along some sections of segment mn Y << 1. In this case no supersonic flow
obtains in the considered duct,

It is obviously possible to select M; and M, so as to obtain the first cagse, The
possibility of realizing the second and third cases depends on the behaviour of the
solution of the Darboux equation near the degeneration line n — § = 0 (itfollows
from (1.2) that g (n — E) = o0 as i — & — 0) with the boundary conditions de-
fined away from that line, This problem is dealt with in Sect, 2; we shall only point
out here that the solution of Eq, (1.1) with function g (n — &) of the form (1. 2) has
a bounded limit when 1 — & — (, provided the boundary conditions on pc and cb
are also bounded,

It can be shown that the latter property has the following meaning relative to the
considered flows, If for some M, and M, a supemsonic flow is realized, i.e. we
have case 1°, then, by maintaining M, comtant or varying within some specified
limits and reducing Ay to some JM,* >> 1, we obtain a duct containing a super-
sonic flow with sonic points on the lower wall, Further decrease of My leads toCase
3° in which a supersonic flow in the duct is not pomsible,

Let us {llustrate the above on the example of the finst duct, assuming that M, and
M, are such that a supersonic flow is realized in the duct, but with the supemsonic
region of influence of characteristics pc and ¢b is bounded by the straight line 4 —
£ = 0 (Fig.2), Since values of y along segment mn are bounded, the truncated
square mpcbn in Fig, 2 corresponds in the physical plane to region mpebn (Fig, 1,a)
of finite dimensijons, which means that the sonic line mn is at a finite distance from
triangle cad a characteristic dimension of the triangle, e.g., the length of segment

od serves as the unit of measurement, For fixed M, and decreasing M, the config-
uration and position of the sonic line segment remains unchanged in the coordinate sy-
stem attached to triangle acd, although the sonic line length increases owing to the
increase of angle pac. Since the ratio of the length of segment ad to cross section

a0  tends to zero as My — 1, there exists an M,* such that when M, = My* the
sonic line reaches the lower wall pb of the duct,

We pass to numerical results obtained by the methad of characteristics in the case
in which the two ducts represent the inlet parts of asymmetric supersonic nozzles that
provide at their outlets a uniform horizontal stream at Mach number M, [1]. To
obtain this it is necessary to shotten the lower contour at some point s 3o as to obtain

ry < z; and, then, complete the lower and upper contours as shown in Fig,3, The
position of point s must be such as to satisfy the specified condition at point /.

It can be verified that the numbers M,, My, and M, are linked by the relationship
21{(M )= h(M3} + h(M,).

These calculations were carried out for M, = 4, % = 1.4, and z, < 2. Here and
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in what follows linear dimensjons are normalized with respect to dimension a0 , The
dependence on # of the Mach number distribution along os is shown in Fig, 4, where
variant a relates to the first duct, and variant b to the second, Note that the comer
points on curves relate to points p or ¢ , and that for z,>>2 the curves in Fig,4,b
may also have another minimum, It can be assumed that in the considered cases M,*
~ 1.37 and M,* =~ 1.06 for the first and second ducts, respectively, For these val-
ues it was at least impossible to carry out calculations even using 600 points on the in-
take characteristic,

Note that the flow in the region above the streamline passing through point » (Fig,
1,b) is similar to the flow in the first duct, Owing to this, the curves in Fig, 4 and the
adduced above Mach numbers 3:* for the first and second ducts define to a certain
extent the rate of "floating up" of the sonic line with decreasing number M,,

2. Letus investigate the behavior of solution of the Darboux equation near the
degeneration line with boundary conditions specified at some distance from-that line.
We begin by considering the Goursat problem for the Darboux equation
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Pz — & (M — E)(fn — Ps) =0 (2.1
p=0(F), n=w, IELE
p=F(m, §=1 t<nu<w
Function £ (2) is determinate in the interval 0 <C z <C w — [ and satisfies the
following conditions: g (z2) > 0,0 <z w —1land g(2) > o asz— 0.
Values of w, ¢, [, and ¥ satisfy the inequalities w —1>0, w — &> 0,
t —1>>0,and t — k < 0. In the above intervals the first dedvatives of functions
® and F are continuous and bounded, hence it is possible to assume that | F' |
K,|® | K, and K << . Maeover F (w) = ® ().
Below, the "truncated” rectangle {I<C ekt <K w, n—E >0}
is denoted by W ., An example of such region is given by the truncated square in Fig,
2.
We introduce the auxilliary functions f/ and @ which will be subsequently required

w-1

fe)=2 1§ g@)dz, @) =e®
Both functions are determinate for 0 <<z < w — [ and, if the singularity of
function & (2) is integrable with z == 0, f and @ are determinate also when 2
Theorem 1 Problem (2.1)has 2 unique solution in region W, except at
points 7 — & = 0. The estimates

[a | < Ko (n— &) || < Ko(n—58)

are then valid for Yy and Y . In these estimates K is a constant that bounds
from above | F’ | and | @’ |, and ¢ (n — Z) is the function defined above,
Proof, Problem (2.1) can be substituted in region W, except at points 71 —
t = 0 by the equivalent system of integral equations

{2.2)

£ (2.3
v={g—Hw—wd+Fn
!
p=—SgM—DE—0dn+ O @ ©=1Pn u=1
n
We solve this system by the method of successive approximations, Let @0
2.4

vp = F' (m), u,= D (§)

3
vn = § g (N —8) (Wnoy — ) dE+ E” ()

= — [ g =B @1 =t dn+ D' @), n=1,2,...
n

To prove the convergence of these sequences and of their estimates-we shall-con~
sider the rests Uny1 — Un aDd  Upsp — Up. It can be shown by induction that
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!vu—vnalthm;_!'—E‘m‘, lun—-un-ll<K‘('f"m_;—!—§')‘): (2.5)

Using the definition of function @(z) from (2.5) we obtain

Yion—vaa | <K Y LA~ k@ —8) — 1)
1 1

gl%-—un-1!<ff(¢(¥l~—§)—*1)

which, in turn, implies that the sequencies Un and Un also converge to some limits,
and that the estimates (2, 2) are valid for Yy = v = lim v, and $; = u = lim u,

Passing to limit in formulas (2. 4) we find that the limit functions ¥ and v satis~
fy system (2. 3) and, consequently, are solutions of problem (2. 1).

The proof of uniqueness of the derived solution is conventional and is omitted here.

Note that the existence and uniqueness of solution of problem (2, 1), in region W,
except the band 0 << v — § < ¢ follows from the theorem derived, for instance,
in [4]. However the obtained there estimates make it impossible to pass to limit with
e — 0, since they contain the quantity 4 = max g (n — &) which increases in-
definitely with increasing % — £ — 0.

Let us consider some properties of solution when 1 — § — 0,

Theorem 2, Iffunction g (2) tends to infinity slower than 27F, § <1
when z-— 0, then V, \}y, and VP; have finite limits when 1 — § — 0. When
function g (z) can be represented in the form g (2) = az~! - ¢ (z), where| g (z) |

<C27,C>0,9>0, thenfor @ <Y, function ¥ has a finite limit when
n— & — 0. (We recall that function g of the Darboux equation (1, 1) which de-
fines plane supersonic flows of polytropic gas with @ = /4 can be represented in
this form).

The validity of both statements follows from estimates (2, 2), definition of functi~
ons f(z) and ¢ (2), and from that a singularity of the type z~? is integrable as z —»

0 and A<<1.

The author thanks A, N, Kraiko and V. N, Vragov for their interest in this work
and useful discussions,
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